Specialisation Bioengineering and nanotechnology

BIO-INGÉNIERIE

BIO-INGÉNIERIE

 Lecturers:
 Emmanuelle LAURENCEAU

 | Lecturers : 0.0 | TC : 0.0 | PW : 0.0 | Autonomy : 0.0 | Study : 0.0 | Project : 0.0 | Language : FR

Objectives

Keywords :

Programme

Learning outcomes

Independent study

Objectifs :

Méhodes :

Core texts

Assessment

IMAGERIES MÉDICALES

IMAGERIES MÉDICALES

Lecturers:Emmanuelle LAURENCEAU, Christelle YEROMONAHOS| Lecturers : 6 | TC : 0.0 | PW : 9 | Autonomy : 6 | Study : 8 | Project : 0.0 | Language : FR

Objectives

Through this course, 3 main imaging and image processing techniques will be discussed: electronic cryo-tomography, X-ray imaging and ultrasound imaging. Concrete examples of image reconstruction and modeling as well as manipulations on devices (RX, US) will help to understand the complete chain of image formation and its interpretation.

Keywords :

Programme	Course (6h): - Principle of electronic cryo-tomography - Principle of X-ray imaging - Principle of Ultra-sound imaging
	Practical work (9h): 1 pratical to choose on one of the 3 imaging techniques
Learning outcomes	 Understand the scientific challenges of medical imaging in terms of information extraction Understand the difficulties associated with reconstructing images from physical measurements and know the methods to overcome them Know the signal processing techniques used in ultrasound imaging
Independent study	Objectifs :
	 Méhodes : - Processing of electronic cryo-tomography images from free software (eman2 and Jsubtomo) Bibliographic studies Processing of data acquired on a research ultrasound system
Core texts	
	75% knowledge (practical report), 25% know-how (oral presentation)

Assessment

INTERACTIONS MATÉRIAU-VIVANT

INTERACTIONS MATÉRIAU-VIVANT

Lecturers:Emmanuelle LAURENCEAU, Vincent FRIDRICI| Lecturers : 3 | TC : 2 | PW : 6 | Autonomy : 6 | Study : 4 | Project : 0.0 | Language : FR

Objectives

Through this course, the fundamental aspects linked to the biological, physicochemical and mechanical phenomena involved during the contact between a surface and a biological medium will be treated. The link with the bioengineering of interfaces and its application will be approached in various forms: analysis of articles, realization of devices, design office

Keywords :

Programme	Course (3h): - Physico-chemistry of interfaces - Biomechanics of interfaces BE (4h): Tribo-mechanics of living tissue Practical work (6h): Realization of a glucose biosensor
	TD (2h): Restitution of the analysis of scientific articles
Learning outcomes	 Understanding the biomechanical challenges of aging and prosthetic medicine Know some techniques for characterizing living tissue Establishment of an experimental protocol Write a complete technical report, correctly referenced
Independent study	Objectifs :
	Méhodes : Analysis of scientific articles
Core texts	

50% knowledge (oral presentation of review articles), 50% know-how (practical report)

Assessment

BIOPRODUCTION

BIOPRODUCTION

Lecturers: Emmanuelle LAURENCEAU | Lecturers : 4 | TC : 0.0 | PW : 7 | Autonomy : 2 | Study : 4 | Project : 0.0 | Language : FR

Objectives

This course will allow engineering students to identify the stages of production of a recombinant protein as well as the different purification methods, their roles and interests in bioproduction processes. The production of recombinant proteins by genetic engineering methods is a common process in most areas of biotechnology. Using perfectly mastered methods, this process makes it possible to obtain specific proteins, in particular of therapeutic interest, with a very high yield.

Keywords :

BIO-INFORMATIQUE, BIO-STATISTIQUE ET MODÉLISATION BIO-INFORMATIQUE, BIO-STATISTIQUE ET MODÉLISATION

Lecturers:Emmanuelle LAURENCEAU, Christelle YEROMONAHOS| Lecturers : 0.0 | TC : 0.0 | PW : 0.0 | Autonomy : 0.0 | Study : 15 | Project : 0.0 | Language : FR

Objectives

Through this course, basic statistical tools as well as modeling concepts and techniques will be discussed to allow engineering students to analyze and model data in the life sciences. From concrete examples, analysis and modeling strategies will be studied, and the development of a complete model will be worked out.

Keywords :

BE 2 (4h): Cell membrane modeling in molecular dynamics BE 3 (4h): Epidemiology and vaccination BE 4 (3h): Statistical tools for life sciences	Programme BE 1 (4h): Modeling BE 2 (4h): Cell mer	g of living tissue nbrane modeling in molecular dynamics
--	--	---

Learning outcomes	 Understanding modeling To be able to simulate and analyze a model
	 Recognize the application contexts of statistical methods and implement them on datasets
	 Understand the principle of molecular dynamics simulations

Independent study Objectifs : This activity is not concerned with framed autonomy activities outside personal work.

Méhodes : This activity is not concerned with framed autonomy activities outside personal work.

Core texts

Assessment

1 written report for each BE, each counting for 25% of the final mark