FLE - Fluids and Energy - S5-S6

FLUIDES ET ENERGIE - CONCEPTS ET APPLICATIONS

FLUIDS AND ENERGY - CONCEPTS AND APPLICATIONS

Lecturers: Pierre DUQUESNE, Ariane EMMANUELLI | Lecturers : 22.0 | TC : 16.0 | PW : 4.0 | Autonomy : 8.0 | Study : 0.0 | Project : 0.0 | Language : MI

Objectives

This teaching component (AF) introduces the whole FLE (Fluids & Energy) teaching unit (UE) through a hands-on exploration of flow physics and presents next the key concepts of fluid mechanics and heat transfers

Keywords : Discovery of fluid mechanics, fundamental governing equations, simplifying frameworks

Programme	 Kinematics and fundamental laws Newtonian viscous fluid Reynolds number Flow regimes and flow features as a function of the Reynolds number Turbulent flows Energy, thermodynamics and compressible flows Vorticity and introduction to aerodynamics Heat transfer Mixtures
Learning outcomes	 Be able to describe the fundamental laws of fluid flows and heat transfers and their various levels of approximation. Be able to identify the main flow features and flow regimes. Be able to perform a dimensional analysis and an order of magnitude analysis for a boundary problem. Know the basics of continuous flux systems and head balances.
Independent study	Objectifs : Illustration of key concepts. Training on report writing and result formatting.
	Méhodes: 2 TD (2 x 2h) : Exercices 1 TP (2h) : Training document + 5-page laboratory report writing
Core texts	 E. Guyon, JP. Hulin, L. Petit., <i>HYDRODYNAMIQUE PHYSIQUE.</i>, CNRS Editions, EDP Sciences., 2012 G. K. Batchelor <i>AN INTRODUCTION TO FLUID DYNAMICS.</i>, Cambridge University Press, 1967 C. Bailly & G. Comte-Bellot<i>TURBULENCE.</i>, Springer, 2015
Assessment	Final mark = 60% Knowledge + 40% Know-how Knowledge = 100% final exam Know-how = 100% continuous assessment

FLUIDES ET ENERGIE - MÉTHODES EXPÉRIMENTALES ET NUMÉRIQUES

FLUIDS AND ENERGY - EXPERIMENTAL AND NUMERICAL METHODS

Lecturers:Pierre DUQUESNE, Andrea MAFFIOLI, Didier DRAGNA| Lecturers : 0.0 | TC : 0.0 | PW : 8.0 | Autonomy : 4.0 | Study : 6.0 | Project : 0.0 | Language : FR

Objectives

This teaching activity presents experimental and numerical methods in fluid mechanics, and the approach to be adopted for their practical implementation.

Keywords :	Experimental	protocal,	Measurement	techniques,	Numerical	simulation,	Comparison	model/experiment,
	Uncertainties							

Programme	 Practical work on flow speed measurement in a jet Practical work on Bernoulli or Air treatment 4 BE sessions on a practical introduction to numerical simulation in fluid mechanics

Learning outcomes	 Know I Know I Know I Know I 	now to make use of experimental and numerical methods in fluid mechanics and energetics. now to design an experimental protocol to characterize a phenomenon. now to present the results of simulations or experiments. now to compare a model and measurements.
Independent study	Objectifs :	Getting started with a numerical simulation software in fluid mechanics. Exploitation of results from numerical simulation.
	Méhodes :	Use of the commercial software FLUENT. Simulations performed under supervision during the three first BE and autonomously in the last BE.
Core texts		

Assessment

Final mark = Know-how Know-how mark = continuous assessment

FLUIDES ET ENERGIE - ETUDES THÉMATIQUES

FLUIDS AND ENERGY - PROJECT LABS

Lecturers: Pierre DUQUESNE, Alexis GIAUQUE, Michel GERON
| Lecturers : 0.0 | TC : 0.0 | PW : 9.0 | Autonomy : 7.0 | Study : 6.0 | Project : 0.0 | Language : FR

Objectives

This module aims at applying all the knowledge and know-how acquired throughout the whole "Fluid Mechanics and Energy" course. From the choice of a topic and the set-up of the relevant practical work sessions, to the presentation of the results, going through performing and interpreting the experiments, the students will have to illustrate a scientific theme (head losses, similarity, heat transfer, hydraulic networks, ...) in order to deliver both an oral presentation to fellow students and a written report.

Keywords : Experiments and numerical simulations. Team work and project mode

Programme	 Defining the project and setting-up of the practical work sessions Performing the experiments Post-processing and analysing the results Oral and written reporting
Learning outcomes	 Be able to identify key flow features and flow regimes Be able to perform a dimensional and an order of magnitude analysis Be able to apply fundamental tools on flow analysis : flux balance, head loss analysis Be able to apply experimental and numerical techniques
Independent study	Objectifs : Performing the measurements, post-processing and analysing the results
	Méhodes : 1h during each practical work session. 2h devoted to post-processing and analysis.
Core texts	
Assessment	The work carried out in FLEtc3 is evaluated by a note which is based on • Oral synthesis: Noral. • The project report: Nreport.