

FLUIDES ET ENERGIE - CONCEPTS ET APPLICATIONS

FLUIDS AND ENERGY - CONCEPTS AND APPLICATIONS

Lecturers: Pierre DUQUESNE, Ariane EMMANUELLI | Lecturers : 22.0 | TC : 16.0 | PW : 4.0 | Autonomy : 8.0 | Study : 0.0 | Project : 0.0 | Language : MI

Objectives

This teaching component (AF) introduces the whole FLE (Fluids & Energy) teaching unit (UE) through a hands-on exploration of flow physics and presents next the key concepts of fluid mechanics and heat transfers

Keywords : Discovery of fluid mechanics, fundamental governing equations, simplifying frameworks

Programme	 Kinematics and fundamental laws Newtonian viscous fluid Reynolds number Flow regimes and flow features as a function of the Reynolds number Turbulent flows Energy, thermodynamics and compressible flows Vorticity and introduction to aerodynamics Heat transfer Mixtures
Learning outcomes	 Be able to describe the fundamental laws of fluid flows and heat transfers and their various levels of approximation. Be able to identify the main flow features and flow regimes. Be able to perform a dimensional analysis and an order of magnitude analysis for a boundary problem. Know the basics of continuous flux systems and head balances.
Independent study	Objectifs : Illustration of key concepts. Training on report writing and result formatting.
	Méhodes : 2 TD (2 x 2h) : Exercices 1 TP (2h) : Training document + 5-page laboratory report writing
Core texts	 E. Guyon, JP. Hulin, L. Petit., <i>HYDRODYNAMIQUE PHYSIQUE.</i>, CNRS Editions, EDP Sciences., 2012 G. K. Batchelor <i>AN INTRODUCTION TO FLUID DYNAMICS.</i>, Cambridge University Press, 1967 C. Bailly & G. Comte-Bellot<i>TURBULENCE.</i>, Springer, 2015
Assessment	Final mark = 60% Knowledge + 40% Know-how Knowledge = 100% final exam Know-how = 100% continuous assessment