

MATÉRIAUX AMORPHES POUR STRUCTURES FONCTIONNELLES INNOVANTES AMORPHOUS MATERIALS FOR INNOVATIVE FUNCTIONAL STRUCTURES

Lecturers: Maria-Isabel DE BARROS BOUCHET, Frédéric DUBREUIL | Lecturers : 12.0 | TC : 14.0 | PW : 4.0 | Autonomy : 0.0 | Study : 0.0 | Project : 0.0 | Language : FR

Objectives

Amorphous materials are synthetic or natural materials widely used in a large number of applications. For these materials, the industrial and technological development has often preceded scientific concerns in terms of characterization, structure-property relationship and modelling of the behavior and their life cycle. Currently, the science of glasses is a field rich in developments, with numerous technological impacts in industrial sectors such as the transportation, civil engineering, medical, agri-food... This course offers a deepening of the knowledge on the specificities of these materials and on their applications. External speakers will be present and a visit to a plastic bottle recycling centre will be organised.

Keywords : Glass, vitreous state, oxides, polymers, elastomers, glass transition, semi-crystallinity, rheological behavior, recycling

Programme	 The amorphous state: origins of order and disorder Manufacturing processes. Networks and crystallization phenomena. Characterization methods: thermal analysis, X-ray, infrared Structure and rheological behavior. Functional properties: optics, shape memory, damping, thermal insulation, electrical conduction and innovative applications in various industrial sectors. Life cycle, characterization and recyclability of a packaging (example of a soda bottle).
Learning outcomes	 Acquire knowledge on the structure and characterisation techniques of amorphous materials in the objective to better understand their properties. Define the characterisation and identification techniques to be used according to the material to be analysed. Have notions concerning the recycling of amorphous materials. Use acquired knowledge to analyse the issues of their life cycle and make a critical analysis.
Independent study	Objectifs : Control of all the stages of the life of a part made of amorphous material from its manufacturing to its after-use destination.
	Méhodes : The autonomous work consists of preparing practical works, writing reports and carrying out a bibliographic project on a problem related to the recyclability of these materials. All these activities are teamwork.
Core texts	Powell, Peter C, ENGINEERING WITH POLYMERS, Chapman & Hall, 1992 Jerzy, Zarzycki GLASSES AND THE VITREOUS STATE, Cambridge University Press, 1991 Duval, ClaudePRÉSENTATION MATIÈRES PLASTIQUES ET ENVIRONNEMENT - RECYCLAGE, VALORISATION, BIODÉGRADABILITÉ, ÉCO-CONCEPTION, Dunod, 2009
Assessment	0.5: knowledge (100% final exam: quiz + exercises); 0.5: know-how (50% oral presentation of the project+50% practical work report).