MÉCANIQUE DES SOLIDES DÉFORMABLES ASPECTS EXPÉRIMENTAUX

EXPERIMENTAL ANALYSIS IN CONTINUUM AND SOLID MECHANICS
Lecturers: Francesco FROIIO, Lyes NECHAK
| Lecturers : $0.0 \mid$ TC : $0.0 \mid$ PW : 16.0| Autonomy : $0.0 \mid$ Study : $4.0 \mid$ Project : $0.0 \mid$ Language : FR

Objectives

(1) become aware of physical phenomena in mechanics,
(2) know different techniques for measuring useful variables in mechanics (extensometry, accelerometry, photoelasticimetry, stroboscopy, etc.),
(3) develop the practical implementation of theoretical concepts and thus promote their assimilation,
(4) knowing how to validate experimental results: critical analysis of the quality and relevance of the measurements carried out, comparing experimental results and results from theoretical or numerical approaches,

Keywords: Deformations, stresses, eigenmodes, resonance phenomenon, static and dynamic measurements, experimental and numerical methods, finite element method

Programme

Discovery lab

TP1: Study of the resonance phenomena of a flexible structure;
Practical work 2: Photoelasticimetry - Visualization of the stress field in 2D solids, measurement of stresses by photoelasticimetry.

Practical work Measurements and analysis
Practical work 3: Determination of the eigenmodes of continuous elastic structures;
Practical work 4: Extensometry (measurements by strain gauges) - Analytical examination, application to the determination of the stress field.

Learning

outcomes

- Master the basic notions of deformations and stresses for the deformable solid
- Understand the link between assumptions, modeling and associated physical phenomena
- Know how to identify the elements of a measurement chain
- Know how to write a report of practical work and design office

Objectifs : Be aware of the requirements and rigor of an experimental analysis.

Méhodes: Learning and mastering the instruments by direct handling during the measurement sequences, with assistance from the teachers

