

WEEX : HYDROGÈNE

WEEX 1

Lecturers: Anne LAMIRAND, Jean-Pierre CLOAREC, Loris PACE

Objectives

This course aims to increase the students awareness about energy ressources and their management. The students form a team of engineers engaged to analyze the feasibility of an energy autonomous residential aera with zero carbon emissions. The district is powered by solar panels and a long term hydrogen storage system. In order to achieve this goal, each team has to mobilize their technical knowledges and soft skills.

Keywords : Hydrogen production, Hydrogen storage, Fuel cell, Off-grid micro-grid, zero carbon emission residential aera

Programme	 Introduction to hydrogen systems for energy-autonomous residential area Study of PV technologies, electrolyzer and fuel cell Sizing of PV system, power electronics and hydrogen boiler Study of material properties for hydrogen storage Design of openings in the storage area to ensure security, selection of H2 and/or smoke sensors Technical and economic analysis of the PV + H2 system using HOMER Pro software Conference linked with the topic made by an external speaker
Learning outcomes	 C5N3 : Clever use of the available resources C2l2 : Evaluate the relevance of the obtained results. Question the proposed method regarding relevant criteria and hypothesis. C3N3 : Valorize the obtained results through good writing and speaking abilities C4l2 : Generate performances individually and in his/her team. Positive interactions during team work. The student is involved in team work and promote cohesion in his/her team. C2l3 : Think and act in an unpredictable environment. Identify issues according to an unknown long-term context.
Independent study	Objectifs : Propose a PV + H2 energy system for an energy-autonomous residential area
	Méhodes : Team work Flipped classroom in most of the activities Deliverables regularly required
Core texts	Dawood, F.; Shafiullah, G.; Anda, M., STAND-ALONE MICROGRID WITH 100% RENEWABLE ENERGY: A CASE STUDY WITH HYBRID SOLAR PV-BATTERY-HYDROGEN, Sustainability, 2020 Evangelos Kalamaras, Meltiani Belekoukia, Zhengyu Lin, Bing Xu, Huizhi Wang, Jin Xuan TECHNO- ECONOMIC ASSESSMENT OF A HYBRID OFF-GRID DC SYSTEM FOR COMBINED HEAT AND POWER GENERATION IN REMOTE ISLANDS, Energy Procedia, 2019

Assessment