

FILTRAGE ADAPTATIF : APPLICATION AU CONTRÔLE ACTIF DE BRUIT

ADAPTIVE FILTERING : APPLICATION TO ACTIVE NOISE CONTROL

Lecturers: Laurent BAKO, Alberto BOSIO, Marc JACOB, Marie Annick GALLAND | Lecturers : 12.0 | TC : 6.0 | PW : 8.0 | Autonomy : 6.0 | Study : 0.0 | Project : 0.0 | Language : MI

Objectives

In recent years, adaptive filtering has found an increasing number of applications (echo cancellation in telephony, channel equalization in communication systems, denoising of bio-medical signals, ...). This course aims to discuss the basic principles, the scope of applicability, and the implementation aspects of adaptive filtering. The originality of the course resides in a multidisciplinary treatment of the adaptive filtering problem going from the design methods (Signal Processing) to hardware implementation with embedded digital processors (Digital Electronics). A specific focus will be put on the problem of active noise control in Acoustics, a typical application of adaptive filtering.

Keywords : Wiener filter, adaptive filtering algorithms (LMS, RLS, ...), digital signal processors, Acoustics, active noise control

Programme	Introduction to adaptive filtering Wiener filter and quadratic optimization LMS algorithm Architecture of DSPs Hardware implementation Introduction to Acoustics Passive noise control Active noise control and applications
Learning outcomes	 Understand the theory of adaptive filtering Apply adaptive filtering algorithms Explain the architecture of digital signal processors Implement adaptive filtering methods for active noise control
Independent study	Objectifs : To design an active control system in all its dimensions : acoustic diagnosis, algorithm choice, performance, DSP implementation
	Méhodes : Project by group of 5 students followed by an oral presentation. The work is based on experimental data and on Matlab and Simulink programs to be adapted. Each group has to propose a reasoned solution and to analyze the results.
Core texts	Simon Haykin, <i>ADAPTIVE FILTER THEORY</i> , Prentice Hall, 2013 Phil Lapsle y, Jeff Bier, Amit Shoham, E.A. Lee SP PROCESSOR FUNDAMENTALS: ARCHITECTURES AND FEATURES , Wiley-Press, 1997
	Final mark 2001 Knowladza + 67.01 Know How with

Assessment

Final mark = 33% Knowledge + 67 % Know-How, with Knowledge = 100% Exam Know-How = 100% Continuous assessment