

SIMULATION NUMÉRIQUE DES ÉCOULEMENTS

NUMERICAL FLOW SIMULATION

Lecturers: Christophe CORRE, Fabien GODEFERD, Marc JACOB | Lecturers : 16.0 | TC : 0.0 | PW : 0.0 | Autonomy : 0.0 | Study : 12.0 | Project : 0.0 | Language : FR

Objectives

The goal of the course is to provide the students with an "advanced user / beginner developer" level in computational fluid dynamics, with a focus on compressible flows of interest in aerospace and energy applications. Following the course, the student should be able to properly select and apply a solution method for an engineering problem of practical interest and should understand the observed numerical behaviour (accuracy, robustness). The student will also be able to perform basic developments in existing CFD codes: change of boundary conditions or implementation of a new numerical flux.

Keywords : Classification of PDEs. Method of characteristics. Finite difference. Finite volumes. Centered and upwind schemes. Riemann solvers. TVD schemes. Structured and unstructured grids. Spectral methods.

Programme	Lectures #2 finite differe Lectures #4 laws (Euler Lectures #	Introduction to CFD. From pioneering works to 21st century challenges. 2 and #3: Analysis of scalar problems : classification of PDEs, method of characteristics, ence schemes for model problems : 1D advection, 1D diffusion, 1D advection-diffusion. 4 and #5: Extension of 1D finite-difference schemes to non-linear systems of conservation equations): from the 1st-order upwind scheme to high-resolution schemes. 6 and #7: Finite-Volume Schemes in structured and unstructured grids. From Euler in Cartesian grids to the Navier-Stokes equations in triangular grids.
Learning outcomes	exact soluti finite differe and severa equation. • Analyz flows include	standing the current challenges of CFD. Applying the method of characteristics to analyze ons of scalar conservation laws. Computing truncation erros and amplification factors for ence schemes applied to model advection, diffusion and advection-diffusion problems in one I space dimensions. Implementing a numerical flux in a CFD code solving the traffic flow ing centered and upwind schemes for the solution of 1D Euler equations (smooth flows and ling discontinuities). Selecting a relevant numerical scheme for the flow under study and roper tuning parameters for this scheme (artificial
Independent study	Objectifs :	Personal work on solved problems following the lectures: checking the good understanding of concepts and tools. Personal work following the computer labs: ability to perform numerical development tasks, ability to perform, interpret and report on numerical experiments.
	Méhodes :	The 3 computer labs of 4h each are devoted to the presentation and application of the CFD codes provided. The students are prepared during these labs to the work which they will perform on their own, for 3 successive levels of difficulty: 1D scalar conservation law, 1D system of conservation laws, multi-D
Core texts	Thomas H. Pulliam, David W. Zingg, FUNDAMENTAL ALGORITHMS IN COMPUTATIONAL FLUID DYNAMICS, Springer, 2014 Eleuterio F. Toro RIEMANN SOLVERS AND NUMERICAL METHODS FOR FLUID DYNAMIC - A PRACTICAL INTRODUCTION, Springer-Verlag, 2009 Charles HirschNUMERICAL COMPUTATION OF INTERNAL AND EXTERNAL FLOWS - THE FUNDAMENTALS OF CFD, Butterworth-Heinemann, 2007	
Assessment	Grade = 40% knowledge (final exam) + 60% know-how (reports on computer labs) Knowledge grade = 100% final exam grade Know-how grade = 100% average of the 3 computer labs reports	